Serveur d'exploration sur la rouille du peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.).

Identifieur interne : 000073 ( Main/Exploration ); précédent : 000072; suivant : 000074

Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.).

Auteurs : David L. Joly [Canada] ; Nicolas Feau ; Philippe Tanguay ; Richard C. Hamelin

Source :

RBID : pubmed:20615251

Descripteurs français

English descriptors

Abstract

BACKGROUND

Obligate biotrophs such as rust fungi are believed to establish long-term relationships by modulating plant defenses through a plethora of effector proteins, whose most recognizable feature is the presence of a signal peptide for secretion. Since the phenotypes of these effectors extend to host cells, their genes are expected to be under accelerated evolution stimulated by host-pathogen coevolutionary arms races. Recently, whole genome sequence data has allowed the prediction of secretomes, facilitating the identification of putative effectors.

RESULTS

We generated cDNA libraries from four poplar leaf rust pathogens (Melampsora spp.) and used computational approaches to identify and annotate putative secreted proteins with the aim of uncovering new knowledge about the nature and evolution of the rust secretome. While more than half of the predicted secretome members encoded lineage-specific proteins, similarities with experimentally characterized fungal effectors were also identified. A SAGE analysis indicated a strong stage-specific regulation of transcripts encoding secreted proteins. The average sequence identity of putative secreted proteins to their closest orthologs in the wheat stem rust Puccinia graminis f. sp. tritici was dramatically reduced compared with non-secreted ones. A comparative genomics approach based on homologous gene groups unravelled positive selection in putative members of the secretome.

CONCLUSION

We uncovered robust evidence that different evolutionary constraints are acting on the rust secretome when compared to the rest of the genome. These results are consistent with the view that these genes are more likely to exhibit an effector activity and be involved in coevolutionary arms races with host factors.


DOI: 10.1186/1471-2164-11-422
PubMed: 20615251
PubMed Central: PMC2996950


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.).</title>
<author>
<name sortKey="Joly, David L" sort="Joly, David L" uniqKey="Joly D" first="David L" last="Joly">David L. Joly</name>
<affiliation wicri:level="1">
<nlm:affiliation>Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P,O, Box 10380, Stn, Sainte-Foy, Québec, QC, G1V 4C7, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P,O, Box 10380, Stn, Sainte-Foy, Québec, QC, G1V 4C7</wicri:regionArea>
<wicri:noRegion>G1V 4C7</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feau, Nicolas" sort="Feau, Nicolas" uniqKey="Feau N" first="Nicolas" last="Feau">Nicolas Feau</name>
</author>
<author>
<name sortKey="Tanguay, Philippe" sort="Tanguay, Philippe" uniqKey="Tanguay P" first="Philippe" last="Tanguay">Philippe Tanguay</name>
</author>
<author>
<name sortKey="Hamelin, Richard C" sort="Hamelin, Richard C" uniqKey="Hamelin R" first="Richard C" last="Hamelin">Richard C. Hamelin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20615251</idno>
<idno type="pmid">20615251</idno>
<idno type="doi">10.1186/1471-2164-11-422</idno>
<idno type="pmc">PMC2996950</idno>
<idno type="wicri:Area/Main/Corpus">000071</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000071</idno>
<idno type="wicri:Area/Main/Curation">000071</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000071</idno>
<idno type="wicri:Area/Main/Exploration">000071</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.).</title>
<author>
<name sortKey="Joly, David L" sort="Joly, David L" uniqKey="Joly D" first="David L" last="Joly">David L. Joly</name>
<affiliation wicri:level="1">
<nlm:affiliation>Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P,O, Box 10380, Stn, Sainte-Foy, Québec, QC, G1V 4C7, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P,O, Box 10380, Stn, Sainte-Foy, Québec, QC, G1V 4C7</wicri:regionArea>
<wicri:noRegion>G1V 4C7</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feau, Nicolas" sort="Feau, Nicolas" uniqKey="Feau N" first="Nicolas" last="Feau">Nicolas Feau</name>
</author>
<author>
<name sortKey="Tanguay, Philippe" sort="Tanguay, Philippe" uniqKey="Tanguay P" first="Philippe" last="Tanguay">Philippe Tanguay</name>
</author>
<author>
<name sortKey="Hamelin, Richard C" sort="Hamelin, Richard C" uniqKey="Hamelin R" first="Richard C" last="Hamelin">Richard C. Hamelin</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (metabolism)</term>
<term>Basidiomycota (physiology)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Expressed Sequence Tags (metabolism)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Library (MeSH)</term>
<term>Genomics (MeSH)</term>
<term>Immunity, Innate (MeSH)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (microbiology)</term>
<term>Proteome (genetics)</term>
<term>Proteome (metabolism)</term>
<term>Sequence Homology, Nucleic Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Banque de gènes (MeSH)</term>
<term>Basidiomycota (génétique)</term>
<term>Basidiomycota (métabolisme)</term>
<term>Basidiomycota (physiologie)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Génomique (MeSH)</term>
<term>Immunité innée (MeSH)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Protéome (génétique)</term>
<term>Protéome (métabolisme)</term>
<term>Similitude de séquences d'acides nucléiques (MeSH)</term>
<term>Étiquettes de séquences exprimées (métabolisme)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Basidiomycota</term>
<term>Protéines fongiques</term>
<term>Protéome</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
<term>Expressed Sequence Tags</term>
<term>Fungal Proteins</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Basidiomycota</term>
<term>Protéines fongiques</term>
<term>Protéome</term>
<term>Étiquettes de séquences exprimées</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Cloning, Molecular</term>
<term>Evolution, Molecular</term>
<term>Gene Expression Profiling</term>
<term>Gene Library</term>
<term>Genomics</term>
<term>Immunity, Innate</term>
<term>Sequence Homology, Nucleic Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Banque de gènes</term>
<term>Clonage moléculaire</term>
<term>Génomique</term>
<term>Immunité innée</term>
<term>Similitude de séquences d'acides nucléiques</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Obligate biotrophs such as rust fungi are believed to establish long-term relationships by modulating plant defenses through a plethora of effector proteins, whose most recognizable feature is the presence of a signal peptide for secretion. Since the phenotypes of these effectors extend to host cells, their genes are expected to be under accelerated evolution stimulated by host-pathogen coevolutionary arms races. Recently, whole genome sequence data has allowed the prediction of secretomes, facilitating the identification of putative effectors.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We generated cDNA libraries from four poplar leaf rust pathogens (Melampsora spp.) and used computational approaches to identify and annotate putative secreted proteins with the aim of uncovering new knowledge about the nature and evolution of the rust secretome. While more than half of the predicted secretome members encoded lineage-specific proteins, similarities with experimentally characterized fungal effectors were also identified. A SAGE analysis indicated a strong stage-specific regulation of transcripts encoding secreted proteins. The average sequence identity of putative secreted proteins to their closest orthologs in the wheat stem rust Puccinia graminis f. sp. tritici was dramatically reduced compared with non-secreted ones. A comparative genomics approach based on homologous gene groups unravelled positive selection in putative members of the secretome.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>We uncovered robust evidence that different evolutionary constraints are acting on the rust secretome when compared to the rest of the genome. These results are consistent with the view that these genes are more likely to exhibit an effector activity and be involved in coevolutionary arms races with host factors.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20615251</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>09</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2010</Year>
<Month>Jul</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.).</ArticleTitle>
<Pagination>
<MedlinePgn>422</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-11-422</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Obligate biotrophs such as rust fungi are believed to establish long-term relationships by modulating plant defenses through a plethora of effector proteins, whose most recognizable feature is the presence of a signal peptide for secretion. Since the phenotypes of these effectors extend to host cells, their genes are expected to be under accelerated evolution stimulated by host-pathogen coevolutionary arms races. Recently, whole genome sequence data has allowed the prediction of secretomes, facilitating the identification of putative effectors.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We generated cDNA libraries from four poplar leaf rust pathogens (Melampsora spp.) and used computational approaches to identify and annotate putative secreted proteins with the aim of uncovering new knowledge about the nature and evolution of the rust secretome. While more than half of the predicted secretome members encoded lineage-specific proteins, similarities with experimentally characterized fungal effectors were also identified. A SAGE analysis indicated a strong stage-specific regulation of transcripts encoding secreted proteins. The average sequence identity of putative secreted proteins to their closest orthologs in the wheat stem rust Puccinia graminis f. sp. tritici was dramatically reduced compared with non-secreted ones. A comparative genomics approach based on homologous gene groups unravelled positive selection in putative members of the secretome.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">We uncovered robust evidence that different evolutionary constraints are acting on the rust secretome when compared to the rest of the genome. These results are consistent with the view that these genes are more likely to exhibit an effector activity and be involved in coevolutionary arms races with host factors.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Joly</LastName>
<ForeName>David L</ForeName>
<Initials>DL</Initials>
<AffiliationInfo>
<Affiliation>Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, P,O, Box 10380, Stn, Sainte-Foy, Québec, QC, G1V 4C7, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feau</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tanguay</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hamelin</LastName>
<ForeName>Richard C</ForeName>
<Initials>RC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>07</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="N">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="N">Expressed Sequence Tags</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012689" MajorTopicYN="N">Sequence Homology, Nucleic Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>01</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>07</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20615251</ArticleId>
<ArticleId IdType="pii">1471-2164-11-422</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-11-422</ArticleId>
<ArticleId IdType="pmc">PMC2996950</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):489-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">42057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Feb 12;19(3):390-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12584125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2006;60:425-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16753033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2009 Aug 22;276(1669):2913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 May;155(1):431-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10790415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jul;8(4):451-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Apr;17(4):394-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15077672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Parasitol. 2004 Mar;20(3):134-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15036035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Jan;9(1):59-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Apr 21;434(7036):980-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15846337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;183(4):993-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Sep;14(9):2107-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12215509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):347-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17400708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2000 Aug;3(4):299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Mar;148(3):929-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2004;42:385-414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15283671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(3):e26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15716308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18045787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 10;306(5703):1957-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2003 Jun 5;311:181-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12853153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Mar;134(3):1027-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2004 Dec;94(12):1358-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Aug;4(4):322-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Mar;22(3):659-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jul 21;300(4):1005-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3347-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Jul;167(3):1341-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15280247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 16;340(4):783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15223320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 1;450(7166):115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2000;38:365-396</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 24;102(21):7766-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Jul;20(7):816-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2006 Dec;2(12):e209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 Jan;20(1):18-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12519901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Nov;18(11):1130-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16353548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2006 Jan;14(1):8-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Apr;22(4):1107-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15689528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2349-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Mar;16(3):755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Oct;17(10):1114-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15497404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2003 Mar;28(3):118-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12633989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Sep 7;317(5843):1400-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17823352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2005 Dec 1;253(1):19-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16216445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 20;270(5235):484-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7570003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Feb;22(2):190-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(9):755-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9918945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3318-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8888-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Oct;20(10):1271-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17918629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D138-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1997 Oct;13(5):555-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2005;6:256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16225690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Feb;11(2):61-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16406302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2006 Jun;259(2):165-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16734775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4874-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Mycol. 1995 Dec;19(4):284-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8574904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Aug;7(8):352-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 6;452(7183):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 Dec;42(12):949-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16291502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2007 Apr;269(2):181-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17343675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Mar;8(3):175-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9521921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jun;17(6):1839-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 2;444(7115):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Jan 24;88(2):243-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9008165</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Feau, Nicolas" sort="Feau, Nicolas" uniqKey="Feau N" first="Nicolas" last="Feau">Nicolas Feau</name>
<name sortKey="Hamelin, Richard C" sort="Hamelin, Richard C" uniqKey="Hamelin R" first="Richard C" last="Hamelin">Richard C. Hamelin</name>
<name sortKey="Tanguay, Philippe" sort="Tanguay, Philippe" uniqKey="Tanguay P" first="Philippe" last="Tanguay">Philippe Tanguay</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Joly, David L" sort="Joly, David L" uniqKey="Joly D" first="David L" last="Joly">David L. Joly</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarRustV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000073 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000073 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarRustV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20615251
   |texte=   Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20615251" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarRustV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 27 22:23:40 2020. Site generation: Sun Jan 31 22:19:43 2021